We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is the Relationship Between Particle Physics and Cosmology?

Michael Anissimov
By
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

There is an intimate relationship between the fields of particle physics and cosmology, which been exemplified by a long line of physicists working in both simultaneously: Albert Einstein, Stephen Hawking, Kip Thorne, and many others. Cosmology is the study of the universe and its structure, whereas particle physics is the study of fundamental particles such as quarks and photons, the smallest known objects. Although at first they may seem as unconnected as anything can be, cosmology and particle physics are in fact closely linked.

Unlike the complex systems on Earth, which much be described using higher-level explanations rather than properties emerging from the lowest levels, intergalactic and cosmological phenomena are comparatively simpler. For instance, in the vast distances of space, only one of the four forces of nature has any real influence: gravity. Although stars and galaxies are very far away and many times larger than ourselves, we have a remarkably accurate picture of how they work, derived from fundamental physical laws which direct their constituent particles.

The domain of cosmology most closely connected to particle physics is the study of the Big Bang, the gigantic explosion that created all the matter in the universe and the spacetime of which the universe itself is composed. The Big Bang started off as a point of near-infinite density and zero volume: a singularity. Then, it quickly expanded to the size of an atomic nucleus, which is where particle physics comes into play. To understand how the earliest moments of the Big Bang influenced the universe as it is today, we must use what we know about particle physics to create plausible cosmological models.

One of the motivations for creating ever more powerful particle accelerators is to conduct experiments which simulate the physical circumstances as early as possible in the history of the universe, when everything was very compact and hot. Cosmologists must be well-versed in particle physics in order to make significant contributions to the field.

Another key to understanding the relationship between particle physics and cosmology is to look at the study of black holes. The physical properties of black holes are relevant to the long-term future of the cosmos. Black holes are collapsed stars with such immense gravity that not even light can escape their grasp. For a while, it was thought that black holes emitted no radiation, and would have been eternal, a paradox to physicists. But Stephen Hawking theorized, based on insights from particle physics, that black holes do indeed emit radiation, which was thereafter dubbed Hawking radiation.

Particle physics is also highly relevant into investigations of dark matter, invisible matter whose existence is known due to its gravitational influence on visible matter, and dark energy, a mysterious force that pervades the universe and causes its expansion to accelerate. These are central questions in modern cosmology.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.