We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is the Kronecker Delta?

By David Isaac Rudel
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The Kronecker delta function, denoted δi,j, is a binary function that equals 1 if i and j are equal and equals 0 otherwise. Although it technically is a function of two variables, in practice it is used as notational shorthand, allowing complicated mathematical statements to be written compactly. Mathematicians, physicists and engineers who work in linear algebra, tensor analysis and digital signal processing use the Kronecker delta function as an expedient to convey in a single equation what might otherwise take several lines of text.

This function is most frequently employed to simplify the writing of equations that involve sigma notation, which is itself a concise method of referring to complicated sums. For example, if a company has 30 employees {e1, e2 ... e30}, and each employee works a different number of hours {h1, h2 ... h30} at a different hourly rate {r1, r2 ... r30}, the total money paid to these employees for their work equals e1*h1*r1 + e2*h2*r2 + e3*h3*r3 + ... e30*h30*r30. Mathematicians can write this concisely as i ei*hi*ri.

When describing physical systems that involve multiple dimensions, physicists frequently must use double summations. The practical scientific applications are very complex, but a concrete example shows how the Kronecker delta function can simplify expressions in these cases.

There are three clothing stores in a mall, each selling a different brand. A total of 20 styles of shirts are available: eight offered by store 1, seven offered by store 2 and five offered at store 3. Twelve styles of pants are available: five at store 1, three at store 2 and four at store 3. One can buy 240 possible outfits, because there are 20 options for the shirt and 12 options for the pants. Each combination yields a different outfit.

It is not as simple to calculate the number of ways to select an outfit in which the shirt and pants are from different stores. One can select a shirt from store 1 and pants from store 2 in 8*3 ways. There are 8*4 ways to select a shirt from store 1 and pants from store 3. Continuing in this manner, one finds the total number of outfits using articles from different stores is 8*3 + 8*4 + 7*5 + 7*4 + 5*5 + 5*3 = 199.

One could consider the availability of shirts and pants as two sequences, {s1, s2, s3} = {8, 7, 5} and {p1, p2, p3} = {5, 3, 4}. Then the Kronecker delta function allows this sum to be written as simply ∑i j si * pj * (1- δi,j). The (1- δi,j) term eliminates those outfits comprising a shirt and pants bought at the same store because in that case i = j, so δi,j = 1 and (1- δi,j) = 0. Multiplying the term by 0 removes it from the sum.

The Kronecker delta function is most frequently used when analyzing multidimensional spaces, but it also can be used when studying one-dimensional spaces, like the real number line. In that case, a single-input variant is often used: δ(n) = 1 if n = 0; δ(n) = 0 otherwise. To see how the Kronecker delta function can be used to simplify complex mathematical statements about the real numbers, one might consider the following two functions whose inputs are simplified fractions:

f(a/b) = a if a =b+1, f(a/b) = -b if b=a+1, and f(a/b) = 0 otherwise.
g(a/b) = a*δ(a-b-1) –b*δ(a-b+1)

The functions f and g are identical, but the definition for g is more compact and requires no English, so it can be understood by any mathematician in the world.

As illustrated by these examples, the inputs of the Kronecker delta function typically are integers that are connected to some sequence of values. The Dirac delta distribution is a continuous analog of the Kronecker delta function used when integrating functions rather than summing sequences.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.