We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is the Isoelectric Point?

By Helga George
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Proteins are built of chains of amino acids, each of which have different pH values. The overall pH of the protein is composed of the mixture of the pH values of the individual amino acids as they form ions in the particular solution in which they are dissolved. The isoelectric point (pI) of a protein is the pH at which that protein has no net charge. This property can be exploited to separate the protein with the known pI from other proteins in a heterogeneous mixture.

Amino acids have an amino terminal group that is basic, having a high pH. The other end of the amino acid is the carboxyl terminal that is acidic, with a low pH. At differing pH values, the amino acids on the proteins will vary in their charges. Proteins below their isoelectric point have a positive charge. In contrast, those above this point have a negative charge.

To exploit knowledge of the isoelectric point for protein purification, a mixture of proteins is subjected to an electric field. This is commonly done in agarose or polyacrylamide gels, and is known as isoelectric focusing. An older technique is to perform the procedure on a larger scale in a glass column using a solution of sucrose with electrodes on each end. Compounds called ampholytes are added that cause the formation of a consistent pH gradient. When the gel or column is subjected to the electric current, the proteins migrate until they reach their isoelectric point, and then remain stationary.

Proteins on gels are generally made visible by a dye that binds proteins. Sometimes, if enzymes are being studied, a substrate can be used that gives a colored reaction. Usually standards are used that have proteins of known isoelectric points.

Once one knows where the desired protein is located, a common technique is to cut the isolated protein out of the gel. The protein can then be purified and sequenced. Once the sequence is known, it can be used to design primers for the polymerase chain reaction (pcr) and used to clone the gene for the protein if suitable nucleic acid material is available.

Isoelectric focusing is also a common way to analyze closely related proteins to see how different they are from each other. One complication can be that proteins can have sugars bound to them. This is called glycosylation and can affect the protein’s pI. It may look like there are multiple proteins with different isoelectric points, when in fact there is just one protein that has been differentially glycosylated. Proteins purified by standard methods such as chromatography are sometimes analyzed by isoelectric focusing to ensure their purity.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.