We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Seismic Refraction?

By Angie Bates
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The method of geological profiling known as seismic refraction measures the time it takes seismic waves or rays to move through the ground, hit the bedrock, and be rebounded back to the surface. Used in geophysics, this method is most accurate when mapping depths of less than 100 feet. In addition to measuring the depth of bedrock, seismic refraction can give information on rock quality and strength.

Seismic waves are a type of force energy that moves through the earth. These waves can be created naturally, as in the case of earthquakes, or through artificial methods, like explosions. Small seismic waves can be created by firing a shot at the ground or by dropping something heavy on to the ground. If the ground shakes or vibrates, that is due to a seismic wave.

In seismic refraction, energy is shot into the earth from the surface usually by blanks fired from a shot gun, a weight dropped on the ground, a small explosive, or hitting a plate with a hammer. The waves move into the ground and then are refracted laterally along the bedrock before rebounding back up to the surface. A series of geophones arranged in a straight line along the area being tested record the waves when they again reach the surface.

Geophones are small metal cylinders that are roughly battery shaped, though they come in different sizes. Inside the cylinder is a coil which hangs from a spring. On either side of the coil are magnets. When the seismic waves cause the ground vibration, the coil moves through the magnetic field, and the energy of the wave can be measured. Computers are often used to analyze the data received from geophones, and graphs plotting travel times versus distance are created to calculate velocities.

Velocities give information about the type of material under the surface of the ground since a wave will move through different types of earth at different speeds. For example, a seismic wave will move through clay at a different speed than it would move through sand. This is why geophysicists can gather information on the materials between the surface and the bedrock.

Seismic refraction should not be confused with seismic reflection. Although seismic reflection uses many of the same testing methods, it gathers images of the bedrock by the waves simply rebounding, or being reflected, off the bedrock rather than dispersing at different angles. Unlike seismic refraction, seismic reflection cannot provide information about the thickness of the material or the velocity of the rays. It is best used in marine environments where seismic refraction is unreliable.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.