We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Precession?

By Jason C. Chavis
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Any alteration in the position of a celestial body's rotation axis is known as precession. Astronomical bodies naturally feature slow changes in both their rotational rate and orbital status around other gravitationally-strong bodies. Two types of precession exist within the realm of astronomy: torque-free and torque-induced. According to the mathematical principles of torque-free precession, the rotating axis is different from the ellipse of an object. In the case of torque-induced precession, the object maintains an alternating rotation.

The most common example of this phenomenon can be seen in the rotation of the Earth itself. Known primarily as precession of the equinoxes, the axial spinning of the Earth essentially traces out the shape of a cone as it orbits the Sun. This occurs within the Earth's orbit every 25,800 years and results in the slow change of the location of the stars in the night's sky. While the stars themselves do not actually change position, their location as compared to coordinates on the planet's surface alter. Observers of this shift on the Earth's crust can identify only a one degree change every 72 years.

In addition to the actual changes in rotation, the changes of inclination can affect precession. Inclination is basically the angle in which an astronomical body relates to a certain other body. In the case of Earth, the planet's inclination in the solar system is essentially aligned with Jupiter. However, this inclination will change due to natural drifting over the course of roughly 100,000 years.

The reason behind the changes in both rotation and inclination are due to the oval-shaped orbit of planets and other bodies. Gravity pulls objects towards larger objects in an imperfect way, resulting in the top-like spin of bodies. As the body spins, it causes resistive forces against the gravitational pull, resulting in a oblong orbit. The combination of these phenomena are believed to be the causes of such incidents on Earth as the Ice Ages, according to the field of precession astronomy.

The first understanding of precession was identified in 150 BC by Hipparchus, a Greek astronomer. However, studies have shown that other ancient cultures, such as the Mayans, were aware of the phenomenon as well. Modern theories involving the rotation and inclination of the Earth were established by the physical laws of Isaac Newton, who defined the effects of gravity from both the Sun and the Moon.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.