We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Polarization?

Deanna Baranyi
By
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Polarization is a property of light, or other electromagnetic radiation, that is primarily understood through studying the waves of the radiation. It was discovered by Etienne Louis Malus, a French physicist in the early 1800s. Visible light is the range of electromagnetic radiation that humans can see, and its wavelengths have a range from about 380 to 740 nanometers. Electromagnetic radiation is radiation that is produced by electric and magnetic fields that travel together at the speed of light through space.

Light has been described as being comprised of two sets of transverse waves that are at right angles to each other. These two sets of waves represent the electric and magnetic segments of radiation. Although polarization can be quite complex, it can better understood using simple examples.

It is sometimes easiest to consider this property if only one of the two sets of waves is considered — the electric set. In unpolarized light, waves are in a jumble of directions. The waves have many different orientations around the direction that the light is going. Each wave is represented by an arrow that is at a right angle to the direction that the wave is moving; however, one arrow may point sideways, one may point upwards, and another may point downwards.

Although unpolarized light may be chaotic, polarization has the opposite effect. Polarized light has the orientation of all the arrows pointing in the same direction. Regardless of which direction the arrows may face, all the arrows follow suit, exactly.

Some scientists may mention circularly polarized light. In that case, the arrow representing the waves of light still exists, but it rotates as the wave moves along. Some have compared the arrow depicting the waves of circularly polarized light to a hand of a clock — rotating around and around as the wave advances.

Polarization is also produced naturally in some instances, such as when light passes through particular crystals or through artificial material designed to create this effect. Polarized sunglasses, for example, work by only letting vertical polarized light in. They are popular among outdoors enthusiasts and people who wish to reduce the glare from the sun.

Radio transmission and receiver antennas also are polarized, and one of the most common uses of this property is in radar. AM and FM radios use vertical polarization while televisions use horizontal polarization. Interestingly, these two directions alternate with the use of satellite communications — even for television use. A satellite can carry two distinct transmissions of a frequency and double the amount of customers that can be served.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Deanna Baranyi
By Deanna Baranyi
Deanna Baranyi, a freelance writer and editor with a passion for the written word, brings a diverse skill set to her work. With degrees in relevant fields and a keen ability to understand and connect with target audiences, she crafts compelling copy, articles, and content that inform and engage readers.
Discussion Comments
By healthy4life — On Nov 29, 2012

I love my polarization sunglasses. The cheap ones that I used to wear didn't do much to reduce the glare from the sun, but these polarized ones work wonders.

I have to drive home facing the sun as it is setting, so the glare can get pretty intense. With my sunglasses, I can focus on the road without having to squint to filter out the intense light.

Also, I don't see the glare on my windshield. If I take the sunglasses off, this glare is blinding, and there is no way I could safely drive without them.

By giddion — On Nov 28, 2012

I didn't know that television and satellite depended upon polarized frequencies. It's pretty cool and convenient that satellite television can use both horizontal and vertical ones.

Deanna Baranyi
Deanna Baranyi
Deanna Baranyi, a freelance writer and editor with a passion for the written word, brings a diverse skill set to her...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.