We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Science

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Bayes' Theorem?

Michael Anissimov
By
Updated: May 21, 2024
Views: 10,475
References
Share

Bayes' theorem, sometimes called Bayes' rule or the principle of inverse probability, is a mathematical theorem that follows very quickly from the axioms of probability theory. In practice, it is used to calculate the updated probability of some target phenomenon or hypothesis H given new empirical data X and some background information, or prior probability.

The prior probability of some hypothesis is usually represented by some percentage between 0% and 100%, or some number between 0 and 1. This probability is often called degree of confidence, and is meant to vary from observer to observer, as not all observers have had the same experience and therefore cannot make equivalent probability estimates for any given hypothesis. The application of Bayes' theorem in a scientific context is called Bayesian inference, which is a quantitative formalization of the scientific method. It allows the optimal revision of theoretical probability distributions given experimental results.

Bayes' theorem in the context of scientific inference says the following: "The new probability of some hypothesis H being true (called posterior probability) given new evidence X is equal to the probability that we would observe this evidence X given that H is actually true (called conditional probability, or likelihood), times the prior probability of H being true, all divided by the probability of X."

A common restatement of the above in terms of how a test result contributes to the probability that a given patient has cancer can be shown as the following:

p(positive|cancer)*p(cancer)

_______________________________________________

p(positive|cancer)*p(cancer) + p(positive|~cancer)*p(~cancer)

The vertical bar means "given." The probability the patient has cancer after a positive result on a certain cancer test is equivalent to the probability of a positive result given cancer (derived from past results) times the prior probability of any given person having cancer (relatively low) all divided by that same number, plus the probability of a false positive times the prior probability of not having cancer.

It sounds complicated, but the above equation can be used to determine the updated probability of any hypothesis given any quantifiable experimental result.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
Share
https://www.allthescience.org/what-is-bayes-theorem.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.