We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is an Inductive Load?

By David Sandoval
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

An inductive load is a part of an electrical circuit that uses magnetic energy to produce work. Most electrical appliances, motors, and other devices can be classified as either inductive or reductive, and this usually has to do with how they absorb and process energy. Inductive circuits tend to be large and usually depend on a coil or other routing system to store and channel energy, and as a consequence most are found in industrial and heavy-duty appliances. Common examples include transformers, electric motors, and electromechanical relays. These sorts of tools basically store energy until it is needed and, once it is, they convert it with a series of magnetic fields; together this process is known as “inducting.” These sorts of loads often have to be harnessed and protected to keep the energy flowing in only one direction, since the force of the power can cause damage to the circuit or connected breakers otherwise.

Electrical Load Basics

Electricity is measured in individual units depending on output needs, but in most cases the total amount of energy coursing through a circuitry system is referred to as a “load” at the point where it the appliance is absorbing or actually using the power. Loads can be large or small, and have different strengths in different applications.

In most cases there are two types of loading, and inductive models are usually characterized by the use of electromagnetic fields. Electromagnetism in these settings will actually cause the energy to move from the source, like an outlet or voltage adapter, into the heart of the circuitry where it can be used to power whatever it is the device does.

How Inductors Work

When a voltage differential is applied across an inductor’s leads, the inductor converts electricity into an electromagnetic field. When the voltage differential is removed from the leads, the inductor will attempt to maintain the amount of electrical current flowing through it. It will discharge when the electromagnetic field collapses, or if an electrical pathway is created between the two inductor leads.

An electric motor is a common example. In these cases, the load is used to convert electricity into physical work. It generally requires more power to start turning the rotor initially than it requires to keep an already-turning rotor in motion, and when voltage is applied to the leads on an electric motor the motor generates a change in magnetic flux. This change induces an electromotive force that opposes the forward-turning force that would start the motor turning; this phenomenon is called a back electromotive force (EMF). After several seconds, an electric motor will have overcome the some of the impedance caused by a back EMF, and will function as designed.

Efficiency

Back EMF causes some of the power from the power source to be wasted. For this reason, an inductive load such as an alternating current (AC) electrical motor will use only about 70% of the electrical energy to do actual work. This means that such loads will require a power supply that can provide enough electrical power to start the motor. This power supply must also provide enough power for the motor to perform physical work as needed.

Importance of Diodes

The inductive process is usually prone to what is known as “blowbacks,” which means that the energy isn’t checked and can cause circuit overloads if it isn’t limited. In addition, some inductive loads, like the electromagnet in an electromechanical relay, might feed a power surge back into the circuit when power is disconnected from the load, which can damage the circuit. For this reason most devices and machines made in this style also have protective “diodes,” which basically act as circuit breakers and require that energy can go in — but prohibit it from also flowing back out.

When the power is switched off, the diode dissipates the power surge by providing a one-way electrical path across the inductor. It will dissipate electrical power until the electromagnetic field collapses or until the power surge current is insufficient to activate the diode.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.