We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Light Microscope?

By Caitlin Kenney
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A light microscope, also called an optical microscope, is an instrument to observe small objects using visible light and lenses. It is a highly used and well-recognized microscope in the scientific community. The device can be used to view living or dead samples and can maximize these samples up to one thousand times (1,000x) their actual size. Light microscopes include almost all compound and stereo microscopes.

This type of microscope is composed of an objective lens, an ocular lens, a stage, a light source, a condenser, a tube, an arm to support the tube, and a focusing system. The specimen is set on the stage, a platform usually equipped with metal arms to hold the specimen or slide in place. The light bulb is situated beneath the stage so that the light shines up through the specimen. The tube focuses down on the stage so that the ocular lens, or eyepiece, is at the far end of the tube and the objective lens is at the end closer to the specimen.

The objective lens is a small, round piece of glass that collects the light from a small area of the specimen at a short focal length and directs the light into the tube. The image is then magnified by the ocular lens, which is put up to the eye. Because the objective lens is convex, it focuses and directs light into its center. By contrast, the concave shape of the ocular lens serves to spread out the light as it meets the eye, thereby making the image bigger. The condenser is a lens, often implanted into the stage or located just below it, that condenses the light rays from the light source onto the spot that is being examined on the specimen above.

A simple light microscope uses only one magnifying lens, but today, most microscopes use two or more lenses to magnify the image. Most microscopes today are compound microscopes that use more than one magnifying lens. The eyepiece typically magnifies to 2x, 4x, or 10x actual size and the ocular lens may magnify 4x, 5x, 10x, 20x, 40x, 50x and 100x. A microscope usually comes with three ocular lenses of different magnification levels set on a rotating nosepiece. There may also be a fourth lens used for oil immersion viewing of specimens, wherein a drop of oil is set on the slide to further refract light and the oil immersion lens is lowered until it touches the oil droplet.

The relationship of glass to magnification and the concept of lenses were discovered by the Romans in the first century, A.D. Lenses were eventually put to use at the end of the 1200s as spectacles. This may have set the stage for Zaccharias and Hans Jannsen, Dutch spectacle makers who, in the year 1590, are said to have invented the first compound microscope by experimenting with several lenses in a tube. The validity of the Jannsens’ claim to this invention, however, is highly disputed. Many historians credit Tuscan scientist Galileo Galilei with the development of the compound microscope and technologically similar telescopes in the early 1600s.

Later, a Dutch store apprentice named Anton Von Leeuwenhoek refined lens making to achieve a steep curvature on a small lens, allowing him to focus on much smaller specimens than ever before. He is often referred to as a father of microscopy as he introduced the microscope as a vital instrument to the field of biology. In addition to other discoveries, Anton Von Leeuwenhoek was the first to view bacteria, yeast, and the organisms in a drop of water.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By cfmom — On Feb 15, 2011

I think sometimes dye has to be added to whatever you are looking at to make it visible. A lot of things that are looked at through a microscope are actually clear at the cellular level, so light shines right through them. Adding the dye gives the light something to reflect off of and allows you to see it better.

By BambooForest — On Oct 12, 2010

I find it amazing that, centuries later, the light microscope is still valuable to scientists. Not only has it led to so many further advances in technology, the light microscope's magnification is still enough for many experiments and observations, especially in academics.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.